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Motivation
Modeling control systems based on data

I The parametric modeling is very time-consuming or even unfeasible.

I Limited to the number of parameters to estimate.

I The modern control methods based on data-driven approaches as
neural networks, in general, does not present safety guarantees.

Lack of safety guarantees

I There is a need to construct algorithms based on data guaranteeing
the security of the system.
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Learning methods

Gaussian Processes: Prior knowledge + nonparametric + uncertainty
quantification
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Data-driven control design

Goal: Improved performance with stability guarantees



Safety guarantees

Boundedness of the tracking error: The data-driven controller guarantees
that, for any desired maximum tracking error ε > 0, the control law
guarantees that the tracking error is bounded in probability and
exponentially converges such that

P{‖e(t)‖ ≤ γ1 exp−γ2(t−t0) ‖e(0)‖+ ε︸ ︷︷ ︸
:=r

} ≥ δ

with r = r(||u||H,D).

T. Beckers, L. Colombo, M. Morari, G. Pappas. Learning-based Balancing of
Model-based and Feedback Control for Second-order Mechanical Systems.
2022 IEEE 61th Annual Conference on Decision and Control (CDC).
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Parametric modeling

¿Which model is correct?

Number of fixed parameters to estimate θ, with prediction based on the
parametric model estimated.

The complexity of the model is limited due to fixed number of parameters



Non-parametric modeling - Data driven modeling

Properties:

I The model scales/adapts with the number of data N .

I Depends on the set of data D = {X,Y },
I The complexity of the model is not limited, the model learns from

the data

I Very flexible but often black-box behavior (lost of interpretability).

I Probabilistic interpretation with Bayesian statistics. In particular,
Gaussian regression models



Data-driven models

Outlook:

Gaussian processes extends the concept of Gaussian distribution to an
infinity collection of variables.

I This extension permits to think a Gaussian process as a distribution
over functions and not only over vectors of random variables.

I In general, Gaussian processes are defined as a distribution over
probability functions.



Gaussian processes

What is a Gaussian Process? It is a Gaussian distribution over function
space.

Gaussian Processes are defined by the mean and covariance functions:

ϕGP (ξ) ∼ GP (m(ξ), k (ξ, ξ′))

I ξ values in the domain

I (ξ, ξ′),all possible pairs in the domain,

I m(ξ) is the mean function

I k (ξ, ξ′) is the covariance function.

C.E. Rasmussen. Gaussian processes for machine learning. MIT Press. 2006.

C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.



Gaussian processes

In other words, a Gaussian process is a collection of random variables, of
which any finite number has a joint Gaussian distribution.

[
y1
y2

]
∼ N

([
m(x1)
m(x2)

] [
k(x1, x1) k(x1, x2)
k(x2, x1) k(x2, x2)

])



Gaussian processes

• To understand the basic functioning of the GP, we have to move our
point of view from function to feature space.

• The so called kernel trick allows for computationally efficient implicit
calculations in the feature space.

Figure: The mapping φ transforms the data points into a feature space where
linear regressors can be applied to predict the output.

• The high-dimensional space is found by a feature map φ from the low
dimensional space to the high-dimensional space. Instead of using the
input x we use the feature map for that input φ(x).

The nice thing is that the feature map φ is not needed as it appears as
〈φ(x), φ(x′)〉 =: k(x, x′)

• Therefore, the essential part in GP modeling concerns the kernel k(·, ·).



Different kernels for the covariance function

Let the covariance matrix be denoted by Ki,j = k(xi, xj ; θK), where k
refers to the function kernel or covariance function, which establish the
correlations among different points of the process.

One of the most commonly used kernels in control theory is the square
exponential (SE) kernel with the form

kSE (xi, xj ;A,L) := A2 exp

{
− (xi − xj)2

2L2

}
+ σ2

nδij ,

where θK = A,L, σn ∈ R to be determined are called hyperparameters.

The hyperparameter A describes the signal variance which determines the
average distance of the data-generating function from its mean.

The length-scale L defines how far it is needed to move along a particular
axis in input space for the function values to become uncorrelated.

σn is a signal noise. The squared exponential kernel is infinitely
differentiable, which means that the GPR exhibits a smooth behavior.
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Bayesian approach for model training

The Bayesian approach to learning models differs from other methods in
two fundamental ways:

I an a prior distribution is selected based on prior knowledge,

I predictions about future observations are made by integrating the
model’s predictions regarding the a posterior distribution of the
parameters, which is obtained by actualizing the a prior distribution
with data.

I Combines previous knowledge with data to obtain an improved
model through Bayes theorem

I Model M, data D, previous information of the model θ.

I Prior: Previous knowledge without data.

I Posterior: New knowledge with data.

I Likelihood: Likelihood of the data D with model M and parameters
θ.



Training a model by using GPR
Bayesian approximation: Update of the prior distribution with new data.

(a) Space of possible (parametric) a priori models. (b) Given a piece of
data, the process learns from the data. Note that we not only have a
point estimate but also a probabilistic distribution on the estimated data.
(f) Posteriori distribution.

The posteriori distribution is again a Gaussian process

Specific kernels generates bounded trajectories (confidence of the model)



Training a model by using GPR
Bayesian approach: Update of the prior distribution with new data

• D = {X,Y }, X =
[
x{1},x{2}, . . . ,x{m}

]
∈ Rp×m e

Y =
[
y{1},y{2}, . . . ,y{m}

]
∈ Rp×m are the training data.

• For the test input x∗ ∈ Rp the prediction for f(x∗) are obtaining by
conditioning over the data which gives rise to the posteriori distribution.

µ (fi |x∗,D)= m(x∗) +k (x∗, X)
>(
K + Iσ2

)−1
Y:,i,

var (fi | x∗,D) = k (x∗,x∗)− k (x∗, X)
> (

K + Iσ2
)−1

k (x∗, X)

for all i ∈ {1, . . . , p}, where Y:,i denotes the i-th column of Y .

• The kernel k measures the correlation between two entries (x,x′). The
function K : Rp×m × Rp×m → Rm×m is the Gram matrix with elements
given by Kj′,j = k(X:,j′ , X:,j) + δ(j, j′)σ2 for all j′, j ∈ {1, . . . ,m} with
the delta function δ(j, j′) = 1 for all j = j′ and zero otherwise.

• The vector valued function k : Rp × Rp×m → Rm, with
elements kj = k(x∗, X:,j) for all j ∈ {1, . . . ,m}, express the covariance
between x∗ the training data with entry X.



Training a model by using GPRs: An overview

• The choice of the kernel and the determination of the corresponding
hyperparameters can be seen as degrees of freedom of the regression
procedure.



Model training: optimization of hyperparameters

• Model training refers to optimizing the parameters of the mean and the
kernel function. We consider a smooth but unknown mapping f with
f(x) = y.

• Let Dν = {xi, yi}νi=1 be the training data set consisting of
n-dimensional input-output pairs, where the output measurements
posible are noisy.

• Usually, the hyperparameter optimization is performed using standars
gradiendt decent methods to minimize the negative marginal log
likelihood, which can be calculated analytically,

h∗l = arg minhl
− log p({(yi)νi=1}|{xi}νi=1, hl).

• Since an analytic solution of the derivation of
log p({(yi)νi=1}|{xi}νi=1, hl) is impossible, a gradient based optimization
algorithm is typically used to minimize the function.

• However, the negative log likelihood is non-convex in general such that
there is no guarantee to find the optimum h∗l . In fact, every local
minimum corresponds to a particular interpretation of the data.
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Multirotor UAVs

Multirotors UAVs have become very popular in recent years, thanks to
the number of applications in which they have proven to be useful. From
the transportation of medical supplies to remote places, the inspection of
civil works or power lines, assistance to firefighters, lifeguards,
agricultural applications, among others.



Underactuated vehicles

We assume a single underactuated rigid body with position p ∈ R3 and
orientation matrix R ∈ SO(3). The body-fixed angular velocity is
denoted by ω ∈ R3. The vehicle has mass m ∈ R>0 and rotational inertia
tensor J ∈ R3×3. The state space of the vehicle is S = SE(3)× R6 with
s = ((R,p), (ω, ṗ)) ∈ S denoting the state of the system.



Underactuated vehicles

The vehicle is actuated with torques τ ∈ R3 and a force u ∈ R, which is
applied in a body-fixed direction defined by a unit vector e ∈ R3. We can
model the system as

mp̈ = Reu+ f(p, ṗ), Ṙ = Rω̌

ω̇ = J−1
(
Jω × ω + τ + fω(s)

)
,

(1)

where the map (̌·) : R3 → so(3) is given by

ω̌ =

 0 −ω3 −ω2

ω3 0 −ω1

−ω2 ω1 0

 , (2)

with the components of the angular velocity ω = [ω1, ω2, ω3]>. The
functions f : R6 → R3 and fω : S → R3 are state-depended disturbances
and/or unmodeled dynamics. It is assumed that the full state s can be
measured.



Underactuated vehicles

The general objective is to track a trajectory specified by the functions
(Rd,pd) : [0, T ]→ SE(3) ' SO(3)× R3.

Figure: Control archichecture.

T. Beckers, L. Colombo, G. Pappas, S. Hirche. Online learning-based
trajectory tracking for underactuated vehicles with uncertain
dynamics. IEEE Control System Letters, 2021.



Learning

For the learning of the unknown dynamics of (7), we consider an oracle
which predicts the values of f ,fω for a given state s. For this purpose,
the oracle collects N(n) : N→ N training points of the system (7) to
create a data set

Dn(t) = {s{i},y{i}}N(n)
i=1 . (3)

The output data y ∈ R6 are given by
y = [(mp̈−Reu)>, (J(ω̇ − ω × ω)− τ )>]> such that the first three
components of y correspond to f and the remaining to fω. The data set
Dn(t) with n : R≥0 → N can change over time t, such that at time
t1 ∈ R≥0 the data set Dn(t1) with N(n(t1)) training points exists.



Learning

Assumption 1: Consider an oracle with the predictions f̂n ∈ C2 and
f̂ω,n ∈ C0 based on the data set Dn (8). Let SX ⊂ (SE(3)× (X ⊂ R6))

be a compact set where the derivatives of f̂n are bounded on X . There
exists a bounded function ρ̄n : SX → R≥0 such that, if || · || denotes the
Euclidean norm, the prediction error is bounded by

P

{∥∥∥∥[ f(x)− f̂n(x)

fω(s)− f̂ω,n(s)

]∥∥∥∥ ≤ ρ̄n(s)

}
≥ δ (4)

with probability δ ∈ (0, 1] for all x ∈ X , s ∈ SX .

Assumption 2: The number of data sets Dn is finite and there are only
finitely many switches of n(t) over time, such that there exists a time
T ∈ R≥0 where n(t) = nend,∀t ≥ T

Assumption 3: The kernel k is selected such that f ,fω have a bounded
reproducing kernel Hilbert space (RKHS) norm on X and SX ,
respectively, i.e. ‖fi‖k <∞, ‖fω,i‖k <∞ for all i = 1, 2, 3.



Model error Lemma

Consider the unknown functions f ,fω and a GP model satisfying
Assumption 3. The model error is bounded by

P

{∥∥∥∥∥µ
([

f̂n(x)

f̂ω,n(s)

] ∣∣∣∣∣s,Dn
)
−
[
f(x)
fω(s)

] ∥∥∥∥∥
≤

∥∥∥∥∥βn>Σ
1
2

([
f̂n(x)

f̂ω,n(s)

] ∣∣∣∣∣s,Dn
)∥∥∥∥∥
}
≥ δ

for x ∈ X , s ∈ SX , δ ∈ (0, 1) with βn ∈ R6

With Assumption 3 and the fact, that universals kernels exist which
generate bounded predictions with bounded derivatives, GP models can
be used as oracle to fulfill Assumption 1. In this case, the prediction error

bound is given by ρ̄n(s) := ‖βn
>

Σ
1
2 ([f̂n(x)>, f̂ω,n(s)>]>|s,Dn)‖.

Under these assumptions and the model error Lemma, we can design a
feedback controller based on backstepping method to exponentially track
a desired trajectory.



Numerical Example 1

To demonstrate the application relevance of our proposed approach, we
consider the task of an quadcopter to explore a terrain with unknown
thermals.

The dynamics of the vehicle is described with mass m = 1 kilogram,
inertia J = I3kg/m

2 and the direction e = [0, 0, 1]> of the force input u.

The data of the thermals is taken from publicly available paragliding data.

The thermals are assumed to act on the quadcopter as a disturbance in
the direction of x3, i.e., the altitude, as well as an angular momentum in
the direction of ω1. A GP model is then used as oracle to predict f(x)
and fω(s) based on the collected data set with the squared exponential
kernel.



Numerical Example 1

Figure: Visualization of the normalized magnitude of the thermal updraft acting
on the quadcopter and the recorded training data points (red crosses).



Numerical Example 1

First, we start with the collection of training data for the GP model. For
this purpose, the control inputs for the aerial vehicle are generated by a
controller but without an oracle, i.e. f̂(x) = f̂ω(s) = 0,∀x ∈ R6, s ∈ S.

The desired trajectory is given by xd,1(t) = sin(t), xd,2(t) = cos(t)− 1,
xd,3(t) = t/10.

Every 0.1 second a training point has been recorded. Each training point
consists of the actual state s and y.

Since the training points depend on the typically noisy measurement of
the accelerations p̈ and ω̇, a Gaussian distributed noise N (0, 0.082I3) is
added to the measurement. After the simulation time of 15 seconds, the
data set D consists of 150 training points. Based on this data set, a GP
model is trained and the hyperparameters are optimized by means of the
likelihood function.



Numerical Example 1

Figure: Tracking error of the quadcopter with control law u without learning
(blue) and with our proposed learning-based approach (red).

Figure: Lyapunov function (solid) converges to a tight set around zero (dashed
line) and stays inside this set with high probability.



Numerical Example 1

Figure: Ground truth (dashed) of the unknown dynamics and estimates of the
GP (solid). Top: Unknown dynamics acting on the x3-position of the
quadcopter. Bottom: Unknown dynamics acting on the first component of the
angular acceleration ω̇ of the quadcopter.



Numerical Example 2

The dynamics of the quadrocopter are described by (1) with mass m = 1
kilogram, inertia J = diag(2, 2, 1)kg/m2 and the direction e = [0, 0, 1]>

of the force input u. As unknown dynamics f and fω, we consider an
arbitrarily chosen wind field and the gravity force given by

f(x) = [0, 0, 2 sin(x1) + exp(−5x22)− 9.81]> (5)

fω(s) = [2 exp(−x21 − x22) + ω1 cos(x2)2, 0, 0]>. (6)

At starting time t = 0, the data set Dn is empty such that the prediction
is solely based on the mean function.

The initial position of the quadrocopter is p(0) = [0.1,−0.1, 0]> whereas
the desired trajectory starts at pd(0) = [0, 0, 0]> due to an assumed
position measurement error. We employ an online learning approach
which collects a new data point every 0.1 seconds such that the total
number of data points is N = 5n.

The GP model is updated every second until t = 12 seconds, where the
last 10 collected training points are appended to the set Dn and the
hyperparameters are optimized by means of the likelihood function.



Numerical Example 2

Figure: A segment of the desired (dashed) and actual trajectory (solid). Every
0.1 seconds a training point (cross) is recorded. Every 0.5 seconds the oracle is
updated based on all collected training points N . The additional training data
allows to refine the model such that the tracking error is decreasing.



Numerical Example 2

Figure: Top: Lyapunov function converges to a tight set around zero. The
jumps occur when the oracle is updated. Bottom: Norm of the feedback gain
matrix is decreasing due to improved accuracy of the oracle.



Numerical Example 2

Figure: Actual trajectory converges to desired trajectory



Failures in the vehicles

Figure: Not only collisions with aircraft or obstacles are risks. What happens if
a vehicle failure occurs? Is it possible to avoid an accident? What are the
technologies to avoid accidents? The DJI company has tried to offer partial
solutions to this problem in its products for professional use.



Failures in the vehicles

Figure: Not only collisions with aircraft or obstacles are risks. What happens if
a vehicle failure occurs? Is it possible to avoid an accident? What are the
technologies to avoid accidents? The DJI company has tried to offer partial
solutions to this problem in its products for professional use.



How we improve vehicle safety?



Multirotors UAVs



Problem Setting

Assume a single rigid body on SE(3) with position p ∈ R3 and orientation
matrix R ∈ SO(3). The body-fixed angular velocity is denoted by ω ∈ R3

and the linear velocity by v ∈ R3. The vehicle has mass matrix m > 0
and rotational inertia tensor J ∈ R3×3, symmetric and positive definite.

The state space of the vehicle is Q = SE(3)× R6 with
q = ((R,p), (ω,v)) ∈ Q denoting the entire state of the system. The
vehicle is actuated with control input vectors u1 ∈ R3 and u2 ∈ R3,
representing the 6D generalized actuation force acting on the system.

We can model the system with the following set of differential equations
representing the kinematics of the rigid body and its uncertain dynamics

Ṙ = RS(ω), ṗ = Rv,

Jω̇ = −ω × Jω + u1 + fω(q),

mv̇ = −ω ×mv +mgRe3 + u2 + fv(q),

(7)

where the operator S : R3 → so(3) is given by S(ω) =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

.



Problem Setting

The functions fv : Q→ R3 and fω : Q→ R3 are state-depended
unknown dynamics. It is assumed that the full state q can be measured.

The general objective is to track a desired trajectory described by the
functions (Rd,pd) : [0, T ]→ SE(3).

Even though in this formulation we consider a fully actuated system, for
some under-actuated systems a virtual control input can be defined to
transform the system in a suitable form.

Suppose that f̂ is known model of the disturbances, then we can rewrite
the equations and estimate f̂ − f instead of f .

For instance, if we want to include the aerodynamic model of the
disturbances after tilting a rotor, and estimate the difference with respect
to this aerodynamic model, we can do it in this way. Here, we assume
that we do not have such a model and the problem is to estimate f .



Fault-tolerant control systems

As it is shown in equation (7), the vehicle is controlled by a proper choice
of control input u, which is generated controlling the velocity of each six
rotors.

Each rotor i = 1, ..., 6 is commanded with a Pulse-width modulation
(PWM) signal 0 ≤ ηi ≤ 1, with 0 corresponding to the rotor completed
stop and 1 to its maximum speed.

There is a linear map A between the PWM signals η ∈ R6 and the
control signal u. The matrix A depends on where each rotor is located,
its orientation, the center of mass of the vehicle and the mechanical
constants of the rotors and propellers.

Given a desired torque u1 = τcmd ∈ R3 and thrust u2 = fz, the
so-called control allocation problem is to find PWM signals η ∈ R6

(0 ≤ ηi ≤ 1, with i = 1, ..., 6) such that u = Aη.

Notice that each column i of the matrix A is the contribution of the
rotor i to the control signal u.



Fault-tolerant control systems

In several works, the fault-tolerant design for UAV is studied as a control
allocation problem. More precisely, when a rotor fails, the corresponding
column of the matrix A is replaced by zeros, since the contribution of
this rotor to the control signal is null.

J. I. Giribet, R. S. Sanchez-Pena, and A. S. Ghersin. ”Analysis and
design of a tilted rotor hexacopter for fault tolerance.” IEEE Trans.
on aerospace and electronic systems 52.4 (2016): 1555-1567.

shows that given a control signal u, for a hexacopter, it is possible to find
a PWM signal η such that u = Aη, even when one column of matrix A
is replaced by zeros for any column.

When a failure occurs, the speed of each rotor is modified to achieve the
same control signal u as when the vehicle was flying in nominal
conditions.

The fault detection system must be fast enough in order to detect the
failure and relocate the PWM signals to achieve the desired control signal
u.



Fault-tolerant control systems

Although it is possible to achieve torque in any direction under failure
conditions, the magnitude is limited making the vehicle not suitable for
real applications.

However, by adding a mechanism to tilt one rotor sideway in case of
failure, a standard hexarotor vehicle can be converted into a robust
fault-tolerant one.

While it is possible to maintain the ability to exert torque in any direction
even with the failure of one rotor, in practice several factors affect the
control performance after a failure, mainly because of non-linearities.

Abbaraju, P., Ma, X., Jiang, G., Rastgaar, M., & Voyles, R. M.
Aerodynamic Modeling of Fully-Actuated Multirotor UAVs with
Nonparallel Actuators. In 2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS).

shows that the aerodynamic effects caused due to tilt angled propeller
configurations has impact on the vehicle performance, and in particular
characterize experimentally some effects that were not particularly
considered before as the blade flapping effect for cant angled propellers.



Fault-tolerant control systems: distubrances

The authors proposed an aerodynamic model for these effects and could
be compensated for, but wind tunnel experiments must be carried out,
which is not an easy task.

Furthermore, it is not easy to isolate these effects and some others which
we are not aware and are responsible for the unknown dynamics f in
equation (7).

Although the control algorithm is robust to failures, it could be adapted
to improve its performance to compensate the unknown disturbances f ,
and for this a learning-based control technique is proposed here.



Learning with Gaussian Processes

For the compensation of the unknown dynamics of (7), we use GPs to
estimate the values of fv,fω for a given state q. For this purpose,
N(n) : N→ N training points of the system (7) are collected to create a
dataset

Dn(t) = {q{i},y{i}}N(n)
i=1 . (8)

The output data y ∈ R6 is given by
y = [(mv̇ + ω ×mv −mgRe3 − u2)>, (Jω̇ + ω × Jω − u1)>]> such
that the first three components of y correspond to fv and the remaining
to fω.

The dataset Dn(t) with n : R≥0 → N can change over time t, such that
at time t1 ∈ R≥0 the dataset Dn(t1) with N(n(t1)) training points exists.
This allows to accumulate training data over time.

The time-dependent estimates of the GP are denoted by f̂v,n(q) and

f̂ω,n(q) to highlight the dependence on the corresponding dataset Dn.



Learning with Gaussian Processes

Assumption 1: The number of datasets Dn is finite and there are only
finitely many switches of n(t) over time, such that there exists a time
T ∈ R≥0 where n(t) = nend,∀t ≥ T .

Note that Assumption 1 is little restrictive since the number of sets is
often naturally bounded due to finite computational power or memory
limitations and since the unknown functions fv,fω in (7) are not
explicitly time-dependent, long-life learning is typically not required.

Therefore, there exists a constant dataset Dnend
for all t > Tend.

Furthermore, Assumption 1 ensures that the switching between the
datasets is not infinitely fast which is natural in real world applications.



Learning with Gaussian Processes

Assumption 2: Consider a Gaussian process with the predictions
f̂v,n and f̂ω,n ∈ C0 based on the dataset Dn. Let

QX ⊂ (SE(3)× (X ⊂ R6)) be a compact set where f̂v,n, f̂ω,n are
bounded on QX . There exists a bounded function ρ̄n : QX → R≥0 such
that, the prediction error is bounded by

P

{∥∥∥∥[fv(q)− f̂v,n(q)

fω(q)− f̂ω,n(q)

]∥∥∥∥ ≤ ρ̄n(q)

}
≥ δ (9)

with probability δ ∈ (0, 1], q ∈ QX .

Assumption 2 ensures that on each dataset Dn, there exists a
probabilistic upper bound for the error between the prediction
f̂v,n(q), f̂ω,n(q) and the actual fv(q),fω(q) on a compact set.



Learning with Gaussian Processes

Assumption 3: The kernel k is selected such that fv,fω have a bounded
reproducing kernel Hilbert space (RKHS) norm on QX ,
i.e., ‖fv,i‖k <∞ and ‖fω,i‖k <∞ for all i = 1, 2, 3.

Assumption 3 requires that the kernel must be selected in such a way
that the functions fv,fω are elements of the associated RKHS. This
sounds paradoxical since this function is unknown. However, there exist
some kernels, namely universal kernels, which can approximate any
continuous function arbitrarily precisely on a compact set such that the
bounded RKHS norm is a mild assumption.

For the later stability analysis of the closed-loop system, we introduce the
following assumptions. In addition, we implicitly assume i.i.d data.



Learning with Gaussian Processes: Model error
Lemma
Consider the unknown functions fv,fω and a GP model satisfying
Assumption 3. The model error is bounded by

P

{∥∥∥∥∥µ
([

f̂v,n(q)

f̂ω,n(q)

] ∣∣∣∣∣q,Dn

)
−
[
fv(q)
fω(q)

] ∥∥∥∥∥
≤

∥∥∥∥∥β>n Σ
1
2

([
f̂v,n(q)

f̂ω,n(q)

] ∣∣∣∣∣q,Dn

)∥∥∥∥∥
}
≥ δ

for q ∈ QX , δ ∈ (0, 1) with βn ∈ R6,

(βn)j =

√
2 ‖ρj‖2k + 300γj ln3

(
N(n) + 1

1− δ1/6

)
. (10)

The variable γj ∈ R is the maximum information gain

γj = max
q{1},...,q{N(n)+1}∈QX

1

2
log
∣∣I + σ−2

j K
(
x,x′

)∣∣ (11)

x,x′ ∈
{
q{1}, . . . , q{N(n)+1}

}
. (12)



Control design

We prove the stability of the closed-loop with a proposed control law
with multiple Lyapunov functions, where the n-th function is active when
the GP predicts based on the corresponding training set Dn.

Position controller: Let pd ∈ R3 be the desired position. Define the
position error by e = RT (p− pd) ∈ R3. By differentiation the latter with
respect to time, the error dynamics can be written as

ė = −S(ω)e+ v.

Let z ∈ R3 be an error signal representing the difference between the
desired and actual linear velocities, z = v − vd ∈ R3. Consider the
Lyapunov function V1,n : R3 × R3 → R≥0,

V1,n(e, z) =
1

2
||e||2 +

1

2
mzTz ≥ 0

and note that Λ1||ζ||2 ≤ V1,n(e, z) ≤ Λ2||ζ||2, where ζ = [eT , zT ]T ,
Λ1 = 1

2min{1,m}, Λ2 = 1
2max{1,m}.



Control design

By differentiating V1,n with respect to the time along the trajectories of
the system, using the expresions for e, ė, y, ẏ, the fact that S(ω) is
skew-symmetric, and (7), we obtain that

V̇1,n(e, z) =e>vd (13)

+ z>{e− S(ω)mv + fv + u2 −mv̇d}.

We design the desired velocity as vd = −k1e, and the position controller
as

u2 =− k2z − e+ S(ω)mv (14)

− k1m(S(ω)e+ v)− µ(fv,n | q,Dn),

where k1, k2 ∈ R>0 are controller gains to be tuned.



Control design

Consider the system (7) and a GP model trained with (8) satisfying
assumptions 1, 2 and 3. The position control law (14) guarantees that
the tracking error ζ is uniformly ultimately bounded in probability by

P

{
‖ζ(t)‖ ≤

√
Λ2

Λ1
maxq∈QX ρ̄nend

(q),∀t ≥ T

}
≥ δ (15)

for all q on QX , δ ∈ (0, 1) with T ∈ R≥0, and exponentially converges to
zero.

L. Colombo, J. Giribet.Learning-Based Fault-Tolerant Control for an
Hexarotor with Model Uncertainty. In IEEE Transactions on Control
Systems Technology, 2024.



Exprerimental results

Next, the control algorithm proposed above is applied to a fault tolerant
hexarotor vehicle. The main objective is to show that the GP estimates
allow to improve the performance of the control after a failure

Figure: Hexarotor fault-tolerant vehicle. On the bottom-left arm, a servo allows
to tilt the re-configurable motor. Two computers can be seen: inside a black
case, the NVIDIA Jetson TX2, and inside a green case, the flight controller.



Experimental results



Experimental results

The low-level computer is responsible for executing critical algorithms
such as attitude control, fault detection and identification (FDI), as well
as applying low-pass and signal conditioning filters.

The high-level computer is tasked with running the position control
algorithm and the GP-based estimation algorithm.

It receives sensor data from the low-level computer at a rate of 100Hz,
including navigation data (attitude, position, and velocity) and angular
velocity information filtered through a low-pass filter to reduce
measurement noise.

While this filtering may theoretically affect the assumption of
independent and identically distributed (iid) Gaussian noise, the
algorithm exhibits satisfactory performance in practical applications.

It is worth mentioning that, failure detection scheme, as well as the
control relocation scheme, is independent of the GP.



Experimental results

In the first experiment, the GP estimates are not used in the control
loop. The control algorithm is the same in nominal conditions and after
the failure occurs, the control allocation matrix is capable of adapting the
6 PWM signals η ∈ R6, to achieve the desired control signal.

Figure: Trajectory tracking with a fault-tolerant hexarotor. The blue dot line is
the reference trajectory. In red (solid) line is the UAV meassured position. A
fail is activated in Rotor 3 (M3) at 75sec. It can be noted a fail in motor 3 is
activated, and then the tracking performance is degraded.



Experimental results

To test how the control algorithm performs when the GP estimates are
used to compensate the disturbances a second experiment was carried
out in outdoor conditions

In these experiments, the GP receives data from the low-level computer
and creates a dataset of 500 samples. The GP corrections is activated
after the failure is detected and compensated. A squared exponential
(SE) kernel was used.

In this study, we initially tuned the hyperparameters of the GP using a
numerical simulator that we developed.

This allowed us to optimize the model’s performance and capture the
underlying dynamics of the system. However, when transitioning to
experimental tests, we found it necessary to make adjustments to these
hyperparameters.

This adaptation was crucial to ensure that the GP model effectively
mitigated the effects of model disturbances in the real-world scenarios.



Experimental results

After the failure, the value f̂v,n(q) detects a change in the disturbances,
which is consistent with a degradation in the control system performance.

Figure: GP estimation of the horizontal components of the perturbations f̂v,n.
The solid line is the mean and the shadow represents the 95% prediction
interval. The GP perturbation estimates are not used as a feedback in the
control loop, just for estimating the disturbances.

The source of this perturbation is not clear, for instance an error in the
tilting angle, aerodynamics perturbations, among others could be
affecting the vehicle. But, it is not relevant here to determine the source
or sources, but estimate the resultant effect.



Experimental results

By iteratively refining the hyperparameters based on empirical
observations, we achieved a better alignment between the GP model and
the experimental data, further enhancing the resilience of our approach.

In order to validate the performance of the control algorithm a flight was
performed with a trajectory as in the outdoor case, and a rotor failure
injected during the flight.

Figure: Orientation of the hexarotor, for a failure occurring during the flight.
Vehicle with GP estimates compensation.



Experimental results

It can be noted that, at approximately 35sec a failure is introduced and
the vehicle recovers stability after a rotor reconfiguration.

Figure: PWM signals of the vehicle, for a failure occurring during the flight.
Vehicle with GP estimates compensation.

In this figure, it can be noticed that, when rotor 3 stops (yellow line) the
remaining rotors increase the velocities, in order to compensate for the
failure.



Robotic Swarms are coming!

Image: NBC News

Persistent Surviellance

over geographically extended
areas, situational awareness,
suggested route for emergency
services.

Environmental Monitoring

ocean dynamics sampling,
evaluating the impact of
pollutants on biological
populations, validation of climate
models, wildlife monitoring,
storm modeling and prediction.



How do we control swarms?

Challenges to go beyond the centralized paradigm of the coordination.

• Individual capacities are limited.

• The information is local, partial and may be erroneous.

• Distributed interactions (communications) prone to failure.

• Heterogeneous dynamics, multiple scales.

Autonomy engineering

How to coordinate individual elements into an overall coherent?

• From top to bottom: design coordination to design the desired
behavior.

• from bottom to top: global behavior of local interaction rules



Limitations for the coordination of robotic swarms

Robotic networks

Limitations

• Computational / memory: precision with respect to the physical
system. Global tasks hard to compute/store.

• Physical modeling: Heterogeneous robots, multiple scales, unknown
dynamics.

• Comunication: decentralized, asynchronous.

• Sensorial: Noise, partial (e.g., lack of information on the position)



Data-driven control with GPR

There are no data-driven control laws for complex, multi-agent
cooperative systems with safety guarantees.

Research line founded by Leonardo Fellowship for researhers and cultural
creators of the BBA Foundation. Project: “Safety guarantees with
data-driven control for cooperative systems.”



Decentralized and almost-decentralized coordination
strategies

I Decentralized formation control strategies

T. Beckers, S. Hirche, L. Colombo. Safe Online Learning-based
Formation Control of Multi-Agent Systems with Gaussian
Processes. Proceedings of the 60th. Conference on Decision and
Control, 2021.

I Flocking control (almost-decentralized)

T. Beckers, G. Pappas, L. Colombo. Learning rigidity-based
flocking control using Gaussian Processes with probabilistic
stability guarantees. Proceedings of the 61st Conference on
Decision and Control, 7254-7259, 2022.


